课题组成员(Members):


教师:徐海 教授; 陈翠霞 教授;赵玉荣 副教授
Staff:Prof. Hai Xu, Dr Cuixia Chen, Dr Yurong Zhao

研究生
博士生:王蒙,杜明轩,刘康,张江玉,李洁,郝瑞瑞,李俊玲
PhD studentsMeng Wang,Mingxuan Du, Kang Liu, Jiangyu Zhang, Jie Li, Ruirui Hao, Junling Li
硕士生:王芳,崔雪静,王政,牟泉萌,毛雅迪,侯哲,杨威
MSc students: Fang Wang, Xuejing Cui, Zheng Wang, Quanmeng Mu, Yadi Mao, Zhe Hou, Wei Yang
已毕业成员
博士:王小强,王净,李燕,贾东辉,胡婧,韩淑怡,陶凯,赵康,曹长海,张静辉,王成栋,周鹏,闫永凤,白靖琨
硕士:曹飒飒,薛均译,吴聪孟,曾平,常松松,于海燕,葛新,谷艳峰,陈玉璨,王景新,杨成,朱世玉,张宇
Former members: Dr. Xiaoqiang Wang, Dr. Jing Wang, Dr. Yan Li, Dr. Donghui Jia, Dr. Jing Hu, Dr. Shuyi Han, Dr. Kai Tao, Dr. Kang Zhao, Dr. Changhai Cao, Dr. Jinghui Zhang, Dr. Chengdong Wang, Dr. Peng Zhou, Dr. Yongfeng Yan, Dr. Jingkun Bai, Miss Sasa Cao, Mr. Junyi Xue, Mr. Congmeng Wu, Mr. Ping Zeng, Mr. Songsong Chang, Miss Haiyan Yu, Mr. Xin Ge, Mr. Yanfeng Gu, Miss Yucan Chen, Miss Jingxin Wang, Mr. Cheng Yang, Mr. Shiyu Zhu, Mr. Yu Zhang


研究方向(Research):
生物材料与工程、生物胶体与生物界面化学,主要包括:
 (1)两亲肽组装体的构筑、调控及机制研究。
 (2)基于两亲肽构筑的生物材料在不同领域的应用。
 (3)表面活性剂组装体的构筑、调控及在不同领域的应用。
 (4)新型多肽类生物材料(抗菌、抗肿瘤及抗细菌生物膜短肽;组织工程肽水凝胶等)的构筑及在生物医学等领域的应用
 (5)海洋生物材料的制备及在不同领域中的应用。


承担项目(Grants & Projects
在研项目:
 (1)国家自然科学基金面上项目(21673293),基于肽自组装纳米金属酶的设计、结构构筑与性能研究。
 (2)国家自然科学基金面上项目(21373270),基于酶促反应的短肽自组装水凝胶构筑、性能调控及其在细胞培养中的应用。
 (3)国家自然科学基金面上项目(31271497),(AABB)n型a-螺旋肽的从头设计及抗肿瘤和细胞选择性机理研究。
 (4)国家自然科学基金青年基金(21503275),含dopa多肽双响应水凝胶体系的构建及在细胞培养中的应用
已完成项目:
 (1)教育部新世纪优秀人才支持计划(NCET-11-0735),纳米催化材料的仿生可控合成。
 (2)山东省自然科学杰出青年基金(JQ201105),肽分子自组装及其功能化。
 (3)国家自然科学基金面上项目(21071151),基于多肽分子设计和性质调控的生物矿化界面作用机制研究。
 (4)国家自然科学基金面上项目(20773164),两亲性多肽的分子设计、界面吸附与自组装研究。
 (5)高校自主创新项目(27R1204028A)(XXYY)n型α-螺旋肽的设计及抗菌功能研究,。
 (6)山东省自然科学基金青年基金(ZR2009DQ001),AxK短肽的自组装行为及抗肿瘤活性研究。
 (7)国家自然科学基金青年基金(30900765),AmKn自组装短肽的抗肿瘤活性研究。(8)国家博士后基金(2012M511555),锥形肽的自组装行为及在不同领域的应用研究
 (9)山东省博士后创新项目(201203110),锥形肽的自组装行为及应用研究
 (10)校引进人才启动项目(Y1304072),两亲肽在有机溶剂中的自组装行为及机制研究。
 (11)校自主创新项目(15CX02026A),ABxA型肽的自组装行为调控及组装动力学研究


代表性论文(Selected Publications
(1)Left or Right: How Does Amino Acid Chirality Affect the Handedness of Nanostructures Self-Assembled from Short Amphiphilic Peptides? J Am Chem Soc. 2017, 139(11):4185-4194. 
 (2)Amino acid side chains affect the bioactivity of designed short peptide amphiphiles. J. Mater. Chem. B 20164, 2359-2368.
 (3)Surface physical activity and hydrophobicity of designed helical peptide amphiphiles control their bioactivity and cell selectivity. ACS Appl. Mater. Interfaces 20168, 26501–26510.
 (4) Enzymatic regulation of self-assembling peptide A9K2 nanostructures and hydrogelation with highly selective antibacterial activities.ACS Appl. Mater. Interfaces20168, 15093–15102.
 (5) Interplay between intrinsic conformational propensities and intermolecular interactions in the self-assembly of short surfactant-like peptides composed of leucine/isoleucine. Langmuir2016, 32, 4662–4672.
 (6)Tuning one-dimensional nanostructures of bola-like peptide amphiphiles by varying the hydrophilic amino acids. Chem. Eur. J.2016,22, 11394–11404.
 (7)Direct exfoliation of graphite into graphene in aqueous solutions of amphiphilic peptides. J. Mater. Chem. B 20164, 152–161.
 (8) Hydrogelation of the short self-assembling peptide I3QGK regulated by transglutaminase and use for rapid hemostasis. ACS Appl. Mater. Interfaces20168, 17833–17841.
 (9)Different nanostructures caused by competition of intra- and inter-β-sheet interactions in hierarchical self-assembly of short peptides. J. Colloid Interface Sci.2016464, 219-228.
 (10)High selective performance of designed antibacterial and anticancer peptide amphiphiles. ACS Appl. Mater. Interfaces20157, 17346–17355.
 (11)Intrinsic defect formation in peptide self-assembly. Appl. Phys. Lett. 2015107, 043701.
 (12)Synthesis of 1D silica nanostructures with controllable sizes based on short anionic peptide self-assembly. J. Phys. Chem. B2015119, 12059-12065.
 (13) Solvent controlled structural transition of KI4K self-assemblies: from nanotubes to nanofibrils. Langmuir201531, 12975-129
 (14) Self-assembly and nanoaggregation of a pH responsive DNA hybrid amphiphile. Soft Matter 201511, 1748-1754.
 (15) Copper(II)-mediated self-assembly of hairpin peptides and templated synthesis of CuS nanowires. Chem. Asian J. 201510, 1953-1958.
 (16) Molecular origin of the self-assembled morphological difference caused by varying the order of charged residues in short peptides. J. Phys. Chem. B2014118, 12501-12510.
 (17) High cell selectivity and low-level antibacterial resistance of designed amphiphilic peptide G(IIKK)3I-NH2ACS Appl. Mater. Interfaces20146, 16529-14536.
 (18)Controlled silica deposition on self-assembled peptide nanostructures via varying molecular structures of short amphiphilic peptides. Soft Matter201410, 7623-7629.
 (19)Tuning gelation kinetics and mechanical rigidity of β-hairpin peptide hydrogels via hydrophobic amino acid substitutions. ACS Appl. Mater. Interfaces 20146, 14360-14369.
 (20)Surface properties of nucleolipids and photo-controlled release of hydrophobic guest molecules from their micellar aggregates. Soft Matter2014, 10, 7218-7224.
 (21)Molecular mechanisms of anticancer action and cell selectivity of short α-helical peptides. Biomaterials 2014, 35, 1552-1561.
 (22)Self-assembled two-dimensional thermoresponsive microgel arrays for cell growth/detachment control. Biomacromolecules201415, 4021-4031.
 (23)Solubilization and stabilization of isolated Photosystem I complex with lipopeptide detergents. PLoS One20138, e76256.
 (24)Thermoresponsive microgel films for harvesting cells and cell sheets. Biomacromolecules201314, 3615-3625.
 (25)Short peptide-directed synthesis of one-dimensional platinum nanostructures with controllable morphologies. Scientific Reports20133, doi:10.1038/srep02565.
 (26)Controlled release of hydrophilic guest molecules from photoresponsive nucleolipid vesicles. ACS Appl. Mater. Interfaces20135, 6232-6236.
 (27)Dual modes of antitumor action of an amphiphilic peptide A9K. Biomaterials201334, 2731-2737.
 (28)Crystal growth of calcite mediated by ovalbumin and lysozyme: atomic force microscopy study. Crystal Growth Des. 201313, 1583-1589.
 (29)Tuning the self-assembly of short peptides via sequence variations. Langmuir201329, 13457-13464.
 (30)Biomimetic synthesis of silica nanostructures with controllable morphologies and sizes through interfacial interactions. Chem. Commun.201248, 9415-9417.
 (31)Imobilization of lipases on alkly silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity. PLoS One20127, e43478.
 (32)Controllable stabilization of poly(N-isopropylacrylacryamide)-based microgel films through biomimetic mineralization of calcium carbonate. Biomacromolecules201213(8), 2299-2308.
 (33)Dissolution of the calcite (104) face under specific calcite-aspartic acid interaction as revealed by in site atomic force microscopy.Crystal Growth Des201212, 2594-2601.
 (34)Interfacial adsorption of cationic peptide amphiphiles: a combined study of in situ spectroscopic ellipsometry and liquid AFM. Soft Matter 20128, 645-652.
 (35) Molecular mechanism of antibacterial and antitumor actions of designer surfactant-like peptides. Biomaterials 201233, 592-603.
 (36) Designed short RGD peptides for one-pot aqueous synthesis of intergrin-binding CdTe and CdZnTe quantum dots. ACS Appl. Mater. Interface20124, 6362-6370.
 (37) Effects of anions on nanostructuring of cationic amphiphilic peptides. J. Phys. Chem. B2011115(41), 11862-11871.
 (38) Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding. Chem. Eur. J.2011, 17, 13095-13102.
 (39) Molecular modulation of calcite dissolution by organic acids. Crystal Growth Des201111, 3153-3162.
 (40) Mechanistic processes underlying biomimetic synthesis of silica nanotubes from self-assembled ultrashort peptide templates. Chem. Mater.2011,23, 2466-2474.
 (41)Self-assembly of short Aβ (16-22) peptides: the effect of terminal capping and the role of electrostatic interaction. Langmuir 201127, 2723-2730.
 (42) Interfacial adsorption of lipopeptide surfactants at the silica/water interface studied by neutron reflection. Soft Matter 20117, 1777-1788.
 (43)Designed antimicrobial and antitumor peptides with high selectivity. Biomacromolecules201112(11), 3839-3843.
 (44)Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev.2010393480-3498.
 (45)Designer amphiphilic short peptides enhance thermal stability of isolated photosystem-I. PLoS One20105, e10233.
 (46)Influence of ovalbumin on CaCO3 precipitation during in vitro biomineralization. J. Phys. Chem. B2010114, 5301-5308.
 (47)Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromolecules 201011, 402-411.
 (48)Twisted nanotubes formed from ultrashort amphiphilic peptide I3K and their templating for the fabrication of silica nanotubes. Chem. Mater. 201022, 5165-5173.
 (49)Role of ovalbumin in the stabilization of metastable vaterite in calcium carbonate biomineralization. J. Phys. Chem. B 2009113, 8975-8982.
 (50)Hydrophobic region induced transitions in self-assembled peptide nanostructures. Langmuir 200925, 4115-4123.
 (51)Lysozyme mediated calcium carbonate mineralization. J. Colloid and Interface Sci.2009332, 96-103.
 (52)Dynamic Self-assembly of Surfactant-like Peptides A6K and A9K. Soft Matter20095, 3870-3878.

专利
 (1)中国发明专利(ZL 201510590566.9),一种两亲性自组装超短肽纳米止血材料
 (2)中国发明专利(ZL201310328915.0),一种新型抗菌肽
 (3)中国发明专利(ZL201510830665.x),一种可用于细胞粘附的水凝胶及其制备方法
 (4)中国发明专利(ZL201510830551.5),一种FeCl3调控的智能型多肽水凝胶、制备方法及其应用
 (5)中国发明专利(ZL201510154911.4),含有偶氮苯光敏基团的脂肽分子表面活性剂及其合成方法
 (6)中国发明专利(ZL201510342412.8),具有近红外响应性的脂肪羧酸分子及其制备方法
 (7)中国发明专利(ZL201510044728.9),一种两亲性脂核酸的制备方法